大数据时代,为何内存分析技术至关重要

  
2014/3/7 11:18:48
据估计,大数据技术和服务市场的规模预计每年拥有27%的增长,市值将于2017 年达到 324 亿美元。增长的主要驱动力来自于构成物联网(IoT)的联网设备所产生的海量数据。

本文关键字: 大数据 内存分析


  零售

  密切关注产品竞争价格的零售商对于实时分析的益处有着最直接的认识,实时分析将能够帮助他们显著增加销量并提升客户体验。但是,高速分析需要大量数据消耗以及实时的数据处理能力,以完成以下任务:

  · 获得产品完整的竞争定价情报

  · 根据定价、商品分类和库存制定实时的数据驱动型决策

  · 捕获和处理来自各种来源的数据,如定价、社交媒体、市场营销、销售和支持等

  · 提高收益、利润和市场份额

  为何内存对于实时分析至关重要?

  内存分析在计算机的主内存中进行,不处理存储在物理磁盘上的数据,为查询整个数据集提供了一种重要方法。这一方法可以显著缩短查询响应时间,让商业智能(BI)和分析应用能够支持企业更快地做出明智的业务决策。

  商业智能和分析应用需要在主内存中长期缓存数据,而具有数以TB计可寻址内存的系统将能够支持在计算机主内存中缓存大量数据,如整个数据仓库或数据集市等。

  除提供速度极快的查询响应以外,内存分析还能够减少或消除数据索引,以及将预汇总的数据存储在在线分析处理(OLAP)数据库或汇总表中的需求。据预测,随着商业智能和分析应用采用内存分析,传统的数据仓库可能仅用于支持不活跃或频率较低的查询。

  实时分析领域最新动态

  大量数据的存储和实时分析能力将不断为企业、学术机构和政府带来机遇,同时也为IT提供商带来了新的市场空间。

  目下,以SAP HANA为代表的内存分析技术迅速崛起,而IBM微软、Oracle、SAS、Teradata等主流数据库、数据分析及数据挖掘厂商,也都已经将内存分析技术做成了标配功能。

  日前,英特尔公司宣布推出新一代至强E7 v2 处理器产品家族,除了在处理器和内存方面实现最高系统持续运行时间的高级可靠性、可用性和可维护性(RAS),还将内存容量和 I/O 速度分别比上一代提高3倍和4倍,从芯片级支持企业实现其数据的全部潜力。包括国际的IBM、HP、Dell、EMC,国内的华为、浪潮、宝德、曙光等多家厂商,纷纷在第一时间基于该芯片推出面向实时分析的解决方案,从而帮助企业以更低的成本进行更高效的运营,并更快速地响应客户需求。

共2页: [1]2 下一页
责编:王薇
vsharing微信扫一扫实时了解行业动态
portalart微信扫一扫分享本文给好友

著作权声明:kaiyun体育官方人口 文章著作权分属kaiyun体育官方人口 、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
最新专题
流动存储 为大数据而生

伴随信息技术的突飞猛进,更大量级的非结构化数据与结构化数据构成的大数据成为企业级存储所面临的最大挑战:一方..

磁盘阵列及虚拟化存储

利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。虚拟化存储,对存储硬件资源进行抽象化表现。

    畅享
    首页
    返回
    顶部
    ×
      信息化规划
      IT总包
      供应商选型
      IT监理
      开发维护外包
      评估维权
    客服电话
    400-698-9918
    Baidu
    map