|
存储之于大数据分析近来大数据分析这个词正逐渐成为IT界流行的一个术语,以代指有关大数据本身的猜想,通俗说来即成堆数据背后问题的答案。然而,如果我们能够从足够的数据点入手比对及交叉分析,或许能帮助我们找到一些有用的数据,甚至可能帮助避免灾难。 目前市场上有两种类型的大数据分析方式--同步的和异步的,两种都有各自在存储容量和特性上的要求。 近来大数据分析这个词正逐渐成为IT界流行的一个术语,以代指有关大数据本身的猜想,通俗说来即成堆数据背后问题的答案。然而,如果我们能够从足够的数据点入手比对及交叉分析,或许能帮助我们找到一些有用的数据,甚至可能帮助避免灾难。 问题是显而易见的,所有的分析都需要大量甚至海量的数据,这便给当今的IT管理人员带来了更新的挑战,即如何捕获、存取、以及分析这些数据并将从中得到的分析用于后续任务的执行? 大数据分析应用通常会使用例如网络流量、金融交易记录以及敏感数据来替代传统形式的内容。数据本身的价值在于数据间的比对、关联或者引用。对大数据的分析通常会意味着与大量的小数据对象打交道,而这些小数据对象往往对响应延时要求非常之高。 当前业界主要有两种大数据分析场景,而它们通常是根据数据处理的形式而区分: 在实时使用场景下,响应效率是最为关键的 ,因此大数据存储架构本身的设计需要满足最小延时的功能。 同步,即实时的或者近乎于实时的;另外一种就是异步的方式,这种方式下,数据首先会被获取,记录下来然后再用批处理进程进行分析。 同步分析 可以想到的近乎于实时的大数据分析的最早的例子就是超级市场里的工作人员是如何统计消费者行为习惯以便于提供相应的优惠促销券的。事实上是,消费者购买行为计算很可能在用户收银前就已经完成,但是概念本身是非常类似的。另外一个相关的例子是在线社交网站可以通过访问用户的行为建立属于他们的行为数据库,这样就可以根据各自不同的消费习惯提供不同的点对点广告植入。 在零售行业,一些大型商铺正开始在停车场对前来购物的消费者使用面部识别技术,这样一旦他们路过或者经过对应的商铺与之相应的促销信息便随之而来。因此,在这样一类的实时大数据分析场景中,速度是第一要素,故而大数据存储架构需要建设成为低延时的场景。 针对同步大数据分析的存储 责编:王雅京 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|