|
分析:大数据技术的发展走向这些大数据中蕴藏着大量可以用于增强用户体验、提高服务质量和开发新型应用的知识,而如何高效和准确的发现这些知识就基本决定了各大互联网公司在激烈竞争环境中的位置... 本文关键字: 大数据 区域医疗信息系统中的医疗数据是典型的大数据。所谓的“大数据”并不只是数量上的“大”。简单套用一下大数据的4V(Volume,Velocity,Variety,Value)定义: 1、 Volume:区域医疗数据通常是来自于拥有上百万人口和上百家医疗机构的区域,并且数据量持续增长。按照医疗行业的相关规定,一个患者的数据通常需要保留50年以上。我们可以想象这是多么巨大的数据量。 2、 Velocity:医疗信息服务中可能包含大量在线或实时数据分析处理的需求。例如:临床决策支持中的诊断和用药建议、流行病分析报表生成、健康指标预警等。 3、 Variety:医疗数据通常会包含各种结构化数据表、非(半)结构化文本文档(XML和叙述文本)、医疗影像等多种多样的数据存储形式。 4、 Value:医疗数据的价值不必多说,它不仅与我们个人生活息息相关,更可用于国家乃至全球的疾病防控、新药研发和顽疾攻克。 近年来,在卫生部的领导下和国家财政支出的支持下,绝大多数的三甲医院和部分二级医院已经先后建立了先进的数字化信息系统和电子健康档案系统。但至今为止,大部分系统和数据仍然只限于内部使用。据了解,2010年底,卫生部完成了“十二五”卫生信息化建设工程规划编制工作,初步确定了我国卫生信息化建设路线图,简称“3521工程”,即建设国家级、省级和地市级三级卫生信息平台,加强公共卫生、医疗服务、新农合、基本药物制度、综合管理5项业务应用,建设健康档案和电子病历2个基础数据库和1个专用网络建设。由此可看出,今后的几年,随着云计算技术的成熟和实用化,大规模区域医疗信息系统和大型数据中心的建立将逐步展开。然而,随着海量医疗数据被保存下来,一个棘手的问题出现了:我们如何通过高效的分析这些数据来提供有价值的服务? 大数据分析技术最初起源于互联网行业。网页存档、用户点击、商品信息、用户关系等数据形成了持续增长的海量数据集。这些大数据中蕴藏着大量可以用于增强用户体验、提高服务质量和开发新型应用的知识,而如何高效和准确的发现这些知识就基本决定了各大互联网公司在激烈竞争环境中的位置。首先,以Google为首的技术型互联网公司提出了MapReduce的技术框架,利用廉价的PC服务器集群,大规模并发处理批量事务。 责编:赵龙 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|