|
解构芝麻信用:互联网+大数据模式下的征信技术变革对征信业的发展起到了非常大的促进作用。 本文关键字: 大数据 1、技术变革推动征信业发展 技术变革对征信业的发展起到了非常大的促进作用。征信最早起源于消费分期,需要对消费者进行信用评估,但当时更多的是通过口碑积累的定性判断,没有定量描述。进入电子化时代后,数据得到了沉淀和积累,我们开始使用数据统计模型来计算和评估信用,这极大地推动了行业快速向前发展。在今天的互联网时代,数据承载量非常大,任何数据都可以成为信用的一部分,即我们可以利用数据与信用的关联度,深层次挖掘信用数据。人工智能算法模型不止是对过去的统计,也包括对未来的预测,它可以帮助我们更好地刻画违约概率和信用状况。
图1 技术变革一直推动着征信业的发展 芝麻信用是在大数据互联网模式下建立的征信系统。阿里巴巴从十年前开始发展电子商务时,就把信用体系建设作为最重要的一环,但最近几年我们才真正开始进入征信行业,还是新兵。芝麻信用的logo上有句标语——“点滴珍贵,重在积累”,这是我们认为信用应有的内涵。芝麻是很有营养的食物,每粒芝麻都不大,但通过点滴积累,将有益于社会的健康发展。
2、互联网大数据征信:广泛、多维、实时
图2 互联网+大数据征信模式的意义 首先,征信人群覆盖广泛,可作为征信体系有效补充。人民银行征信中心在征信数据方面做得非常出色,有效地解决了信用风险问题,帮助金融行业持续健康发展,大大提高了金融的获得性。同时我们也看到,目前只有不到4亿人在央行征信系统有信用记录,还有很多人没有信用记录数据,在获得金融服务时,存在一定的门槛。中国有6.48亿网民,人群覆盖面非常广,通过对他们在网络上留下的痕迹进行数据挖掘和分析,能够对目前的征信状况进行有效补充,让更多在互联网上有数据的人,通过刻画得出的信用状况,也能得到金融服务,当然还包括生活服务。 其次,征信信息广谱多维。现有征信记录主要是个人信息加信贷记录,而互联网上的行为记录非常多,我们可以用大数据的方法计算互联网上万个变量,将更多信用记录以外的信息纳入征信体系。结合现有身份记录和信贷记录,以及生活类数据,再加上互联网数据,可以得到更多广谱信息来刻画信用。 最后,征信数据实时鲜活。大数据的两个主要特点是存量、热数据,它不再是离线的事后分析数据,而是在线实时的互动数据。如果某个人有违约行为记录,会立刻被刻画进来,使当前业务的快速决策更加有效。 3、运用大数据征信模型全面刻画信用 信用是一笔巨大的资产,让它成为一个可衡量、可变现的资产是我们的愿景。我们通过两种方法实现对现有征信体系的补充和促进:第一种是通过所有数据——包括传统数据和互联网数据——来挖掘和刻画一个人的信用状况,帮助金融机构更好地了解一个人,同时也服务于人群,便于他们获得更多信用服务;第二种是海量、丰富的互联网数据资源的“再生利用”。在科技时代,数据即资产,是核心竞争力。我们希望把上述两者结合起来,并定位于普惠金融人群来盘活数据。 我们的优势在于互联网数据,但不仅指交易数据。多年来,用户通过第三方支付缴纳水电煤气费、信用卡还款以及物流信息也是重要的数据来源。当然,公共政务数据也很重要,此外还有用户自主上传的数据。这些数据能够帮助我们更好地描述以及准确地刻画个人信用。我们输出的是信用分,基于数据来构建决策引擎,以便向用户输出更有价值的服务。
图3 接入大量外部广谱数据 大数据征信模型与传统评分体系有所不同。我们深度融合了传统信用评估与创新信用评估,开创了大数据征信模型。在模型中,信用历史是非常重要的一项,其他维度包括身份特质、履约能力、行为偏好和人脉关系(此项分数比重稍低)。通过这五大维度,我们建立了刻画个人信用全貌的模型。
图4 大数据征信模型 我们的主要切入点在于,使普通老百姓感受到信用的力量和价值,使他们今后在生活中注意培养信用意识,并在全社会建立起信用文化。我们更多地布局在为生活类交易服务,解决B2C(商户与人之间)和C2C(人与人之间)的信任问题。对于商户来说,当一个新用户进入,如果能准确地刻画他的信用,就能更好地提供服务。比如,可以凭信用入驻酒店,也可以凭信用租车,在退房或者还车时再付钱,这样用户的体验会非常好。当然,不仅是在提供服务端,而且在售后端,比如投诉和退货,也可以基于信用提供很多增值服务。C2C也类似,以前在线下交易时,了解对方的门槛非常高,有了信用分,可以极大地降低交易双方的门槛,促进基于信用的交易发展,同时提供更好的交易体验。
图5 渗透生活方方面面的信用 在金融类交易方面,可以基于信用分识别违约的可能性。现在我们正尝试与一家租车公司合作,把信用分放到交易场景里,设定分数高低与违约概率相关。令人惊喜的是,我们发现信用分的识别度非常明显,且信用分达到一定分值以上的总体违约概率较低。 4、净化互联网环境 在合法合规的前提下,大数据征信公司应科学客观公正地评价个人的信用水平,通过输出各种标准化和定制化的身份识别、反欺诈、信用风险识别与跟踪产品与服务,赋能合作伙伴,并一起推动中国诚信文化的传播和诚信体系的构建。 基于大数据7×24小时在线运算能力,芝麻信用有非常强大的身份识别和反欺诈能力,能够以商业化的方法净化互联网环境。人的生物特征包括指纹(这里仅仅是说指纹可以用于进行身份识别和反欺诈。《征信业管理条例》严格禁止征信机构采集基因、指纹、血型等信息用于征信业务。芝麻信用会严格按照法律、行政法规的规定经营征信业务。)、人脸、虹膜和声波,随着生物识别技术的发展,生物特征的识别率、准确性、可靠性可以大大提高,再辅之其他识别方法,可以非常精准、可靠地识别人,这样就能将人与账户和设备关联起来。基于这套识别体系,能够充分了解网上的行为主体。今年3月,我们在德国展示了人脸识别技术,我们的样本非常大,识别可靠性也不错,我们对此抱以期待。
图6 建立基于生物识别的核身体系
图7 实时场景风险评估 另外,通过账户行为分析,我们能够准确地刻画人的行为,以此判断是否出现行为异常,带来安全隐患,帮助合作伙伴进行反欺诈识别。未来,反欺诈将回到“以人为本”,而不是以账号为中心。线下查询信用一定要本人持身份证来操作,身份识别对网上查询来说也很关键,确认是否本人非常重要,我们在这方面有强大的手段。 我们的目标是,构建赋能商业与金融机构的开放式大数据平台。上层是不同机构,中层是通过解决方案进行决策引擎,下面是通过大数据和模型,在取得授权的情况下,开发基于行业的应用。这是一个持续学习及沉淀经验的平台,提供了很多可以不断细化的工具,并且是实时监控的专业级数据安全管理。此外,基于云平台的计算,需要做好云端数据安全管理。我们不仅输出信用分或征信报告,更是搭建了一个开放数据共创的云计算平台,并基于云平台来构建数据的决策引擎体系,帮助合作伙伴实现商业目的。
实时数据安全监控、持续沉淀提升的开放式赋能平台 5、开放政务信息源 加快信用领域立法
现在,一切路途还只是刚刚开始,希望我们能与合作伙伴一起不断向前发展。对于央行大力促进征信行业的发展,推动社会征信体系的建设,我们举双手赞成。同时,我们也提出两点建议。 首先,开放政务信用信息源。开放数据将产生巨大的社会价值,我认为,可以向符合资格的机构开放信息源,这些机构取得了国家许可执照,便于接受监管。如果他们能真正用市场化手段把这些数据运用起来,并回馈社会,将产生非常大的社会价值。 其次,信用领域立法应当平衡公民隐私保护与个人信息数据合法利用。这将使征信机构的业务开展有法可依,有利于征信行业的长远健康发展,促进社会信用体系建设。同时,政府的立法能够提升普通民众对征信行业的了解、接纳和信任程度,为征信行业的发展营造有利的大环境。无论法律细节完善与否,芝麻信用都会充分重视保护用户的隐私与合法权益。 责编:何鹏 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|