|
大数据考验存储平台弹性目前,对于“大数据”的讨论很多,公认的看法是将大数据的系列问题归纳为:海量的数据规模(volume)、快速的数据流转和动态的数据体系(velocity)、多样的数据类型(variety)和巨大的数据价值(value),以及我们的对策。但实际上,大数据首先要考虑的应该是“大”-- 海量的数据规模。 本文关键字: 大数据 目前,对于“大数据”的讨论很多,公认的看法是将大数据的系列问题归纳为:海量的数据规模(volume)、快速的数据流转和动态的数据体系(velocity)、多样的数据类型(variety)和巨大的数据价值(value),以及我们的对策。但实际上,大数据首先要考虑的应该是“大”-- 海量的数据规模。 大数据之“大” “大”是相对而言的概念。例如,对于像SAP HANA那样的 “内存数据库”来说,2TB可能就已经是大容量了;而对于像谷歌这样的搜索引擎,EB的数据量才能称得上是大数据。 “大”也是一个迅速变化的概念。HDS 在 2004 年发布的 USP 存储虚拟化平台具 备管理 32PB 内外部附加存储的能力。当时,大多数人认为,USP 的存储容量大得有 些离谱。但是现在,大多数企业都已经拥有 PB 级的数据量,一些搜索引擎公司的数据 存储量甚至达到了 EB 级。由于许多家庭都 保存了 TB 级的数据量,一些云计算公司正在推广其文件共享或家庭数据备份服务。 有容乃“大” 由此看来,大数据存储的首要需求存储容量可扩展。大数据对存储容量的需求已经超出目前用户现有的存储能力。我们现在正处于 PB 级时代,而EB级时代即将到来。过去,许多企业通常以五年作为 IT系统规划的一个周期。在这五年中,企业的存储容量可能会增加一倍。现在,企业则需要制定存储数据量级(比如从PB级到EB级)的增长计划,只有这样才能确保业务不受干扰地持续增长。这就要求实现存储虚拟化。存储虚拟化是目前为止提高存储效率最重要、最有效的技术手段。它为现有存储系统提供了自动分层和精简配置等提高存储效率的工具。拥有了虚拟化存储,用户可以将来自内部和外部存储系统中的结构化和非结构化数据全部整合到一个单一的存储平台上。当所有存储资产变成一个单一的存储资源池时,自动分层和精简配置功能就可以扩展到整个存储基础设施层面。在这种情况下,用户可以轻松实现容量回收和容量利用率的最大化,并延长现有存储系统的寿命,显着提高IT系统的灵活性和效率,以满足非结构化数据增长的需求。中型企业可以在不影响性能的情况下将HUS的容量扩展到近3PB,并可通过动态虚拟控制器实现系统的快速预配置。此外,通过HDS VSP 的虚拟化功能,大型企业可以创建0.25EB容量的存储池。随着非结构化数据的快速增长,未来,文件与内容数据又该如何进行扩展呢? 责编:赵龙 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|