|
Hadoop新一代MapReduce框架更快、更强本文介绍了Hadoop 自0.23.0版本后新的MapReduce框架(Yarn)原理、优势、运作机制和配置方法等;着重介绍新的Yarn框架相对于原框架的差异及改进。 ApplicationMaster ApplicationMaster是一个框架特殊的库,对于Map-Reduce计算模型而言有它自己的ApplicationMaster实现,对于其他的想要运行在yarn上的计算模型而言,必须得实现针对该计算模型的ApplicationMaster用以向RM申请资源运行task,比如运行在yarn上的spark框架也有对应的ApplicationMaster实现,归根结底,yarn是一个资源管理的框架,并不是一个计算框架,要想在yarn上运行应用程序,还得有特定的计算框架的实现。由于yarn是伴随着MRv2一起出现的,所以下面简要概述MRv2在yarn上的运行流程。 MRv2运行流程: MR JobClient向resourceManager(AsM)提交一个job AsM向Scheduler请求一个供MR AM运行的container,然后启动它 MR AM启动起来后向AsM注册 MR JobClient向AsM获取到MR AM相关的信息,然后直接与MR AM进行通信 MR AM计算splits并为所有的map构造资源请求 MR AM做一些必要的MR OutputCommitter的准备工作 MR AM向RM(Scheduler)发起资源请求,得到一组供map/reduce task运行的container,然后与NM一起对每一个container执行一些必要的任务,包括资源本地化等 MR AM 监视运行着的task 直到完成,当task失败时,申请新的container运行失败的task 当每个map/reduce task完成后,MR AM运行MR OutputCommitter的cleanup 代码,也就是进行一些收尾工作 当所有的map/reduce完成后,MR AM运行OutputCommitter的必要的job commit或者abort APIs MR AM退出。 在Yarn上写应用程序 在yarn上写应用程序并不同于我们熟知的MapReduce应用程序,必须牢记yarn只是一个资源管理的框架,并不是一个计算框架,计算框架可以运行在yarn上。我们所能做的就是向RM申请container,然后配合NM一起来启动container。就像MRv2一样,jobclient请求用于MR AM运行的container,设置环境变量和启动命令,然后交由NM去启动MR AM,随后map/reduce task就由MR AM全权负责,当然task的启动也是由MR AM向RM申请container,然后配合NM一起来启动的。所以要想在yarn上运行非特定计算框架的程序,我们就得实现自己的client和applicationMaster。另外我们自定义的AM需要放在各个NM的classpath下,因为AM可能运行在任何NM所在的机器上。 责编:郑雄 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 推荐圈子 |
|