数据过大妨碍分析洞察

来源: 互联网
2013/5/16 17:52:49
大数据对使用者来说看似意味着好的洞察,但过量的数据并不一定带来更好的洞察,统计学家Nate Silver这样认为,他是美国最著名的数据分析师。“数据量越大,人们可以用来证明他们所想的结果的证据就越多”,他说。

分享到: 新浪微博 腾讯微博
本文关键字: 数据 分析

大数据对使用者来说看似意味着好的洞察,但过量的数据并不一定带来更好的洞察,统计学家Nate Silver这样认为,他是美国最著名的数据分析师。“数据量越大,人们可以用来证明他们所想的结果的证据就越多”,他说。


大数据不仅仅在政治上应用,得到许多有趣的结论,在医学领域和地震预测,研究人员更希望利用大数据得出有趣的结论,而不是什么消息都没有。在真正的洞察中,大数据会带来许多“虚假的相关性”,那些看似互相关联的数据,其实只是干扰数据。


Nate Silver由此提出了四条建议,帮助使用者获得更好的洞察。


1.概率性思考而非绝对性化思考


正如调查中也会出现误差一样,不要惧怕预测中的不确定性,不确定性是重要的和科学的。如果忽略了事物的不确定性会导致严重后果。Nate Silver指出,在1997年时,国家气象局预测,Grand Forks的Red River的洪水水位是49英尺,因此镇上的防洪堤被设计成能承受51英尺的洪水。不幸的是,国家气象局在分析时并未将通过过去的数据得出的正负9英尺误差算进去,洪水达到了54英尺,Grand Forks被淹没。


现在国家气象局更加关注不确定性,这在预测中非常重要。


2.明确你的出发点,明白你的弱点


Nate Silver以一个性别歧视实验为例,一份女性名字和男性名字的简历,即使被调查人明确表示他没有性别歧视,但他潜意识更可能歧视女性的简历。而知道自己有性别歧视倾向的人会采取一定办法来抵消它的作用。


3.在得出结论前,了解数据所在的真实情况,理论联系实际。换句话说,能够准确预测San Diego的天气,并不代表可以同样准确预测Buffalo的天气。


就好比,预测一个稳定的经济环境比动荡、萧条的经济环境容易得多,这也解释了为什么许多预测者大都对经济衰退毫无准备,因为预测模型是基于1986-2006的数据创建的,那段时间经济异常稳定。


4.尝试和错误是有帮助的。


预测模型总是在错误中缓慢成长的,就像生活中的许多事情:“你应该怀疑奇迹般的结果”。

责编:李红燕
vsharing 微信扫一扫实时了解行业动态
portalart 微信扫一扫分享本文给好友
著作权声明:kaiyun体育官方人口 文章著作权分属kaiyun体育官方人口 、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
最新专题
IT系统一体化时代来了

2009年Oracle 用Exadata服务器告诉企业,数据中心的IT服务一体化解决方案才是大势所趋,而当前企业对大数据处理的..

高性能计算——企业未来发展的必备..

“天河二号”问鼎最新全球超级计算机500强,更新的Linpack值让世界认识到了“中国速度”。但超算不能只停留于追求..

    畅享
    首页
    返回
    顶部
    ×
    畅享IT
      信息化规划
      IT总包
      供应商选型
      IT监理
      开发维护外包
      评估维权
    客服电话
    400-698-9918
    Baidu
    map