|
物联网关键技术研究与应用根据物联网的内涵可知,要真正实现物联网需要感知、传输、控制及智能等多项技术。物联网的研究将带动整个产业链或者说推动产业链的共同发展。 (1)测试及网络化测控技术。综合传感器技术、嵌入式计算机技术、分布式信息处理技术等,协作地实时监测、感知和采集各种环境或监测对象的信息,并对其进行处理、传输。只有依靠先进的分布式测试技术与测量算法,才能满足日益提高的测试和测量需求。 (2)智能化传感网节点技术。所谓传感网节点是指一个微型化的嵌入式系统。在感知物质世界及其变化的过程中,需要检测的对象很多,譬如温度、压力、湿度、应变等,因此需要微型化、低功耗的传感网节点来构成无线传感网的基础层支持平台。这不但需要采用MEMS 加工技术,设计符合物联网要求的微型传感器,使之可识别和配接多种敏感元件,并适用于主被动各种检测方法;另外,传感网节点还应具有强抗干扰能力,以适应恶劣工作环境的需求。这里重要的是,利用传感网节点具有的局域信号处理功能,在传感网节点附近局部完成一定的信号处理,使原来由中央处理器实现的串行处理、集中决策的系统,成为一种并行的分布式信息处理系统。 (3)传感网组织结构及底层协议。网络体系结构是网络的协议分层以及网络协议的集合,是对网络及其部件所应完成功能的定义和描述。对传感网而言,其网络体系结构不同于传统的计算机网络和通信网络。对于物联网的体系结构,已经提出了多种参考模型[2]。就传感网体系结构而言,也可以由分层的网络通信协议、传感网管理以及应用支撑技术三个部分组成。其中,分层的网络通信协议结构类似于TCP/IP 协议体系结构;传感网管理技术主要是对传感器节点自身的管理以及用户对传感网的管理;分层协议和网络管理技术是传感网应用支撑技术的基础。 (4)对传感网自身的检测与自组织。传感网是整个物联网的底层和信息来源,网络自身的完整性、完好性和效率等性能至关重要,因此,需要对传感网的运行状态及信号传输通畅性进行良好监测,才能实现对网络的有效控制。在实际应用当中,传感网中存在大量传感器节点,密度较高,当某一传感网节点发生故障时,网络拓扑结构有可能会发生变化,因此,设计传感网时应考虑传感网的自组织能力、自动配置能力及可扩展能力。 (5)传感网安全。传感网除了具有一般无线网络所面临的信息泄露、信息篡改、重放攻击、拒绝服务等多种威胁之外,还面临传感网节点容易被攻击者物理操纵,获取存储在传感网节点中的信息,从而控制部分网络的安全威胁。这显然需要通过其他的网络安全技术来提高传感网的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商算法,使得即使有一小部分节点被恶意控制,攻击者也不能或很难从获取的节点信息推导出其他节点的密钥信息;对传输信息加密解决窃听问题;保证网络中的传感信息只有可信实体才可以访问;采用一些跳频和扩频技术减轻网络堵塞等问题。 2.2 物联网的部分网络通信技术 根据目前物联网所涵盖的概念,其工作范围可以分成两大块:一块是体积小、能量低、存储容量小、运算能力弱的智能小物体的互联,即传感网;另一块是没有上述约束的智能终端的互联,如智能家电、视频监控等。对于智能小物体网络层的网络通信技术目前有两项:一是基于ZigBee 联盟开发的ZigBee协议进行传感器节点或者其他智能物体的互联;另一技术是IPSO 联盟所倡导的通过IP 实现传感网节点或者其他智能物体的互联。 (1)ZigBee 技术。ZigBee 技术是基于底层IEEE 802.15.4标准,用于短距离范围、低传输数据速率的各种电子设备之间的无线通信技术,它定义了网络/安全层和应用层。ZigBee技术经过多年的发展,技术体系已相对成熟,并已形成了一定的产业规模。在标准方面,已发布ZigBee 技术的第3 个版本V1.2;对于芯片,已能够规模生产基于IEEE 802.15.4 的网络射频芯片和新一代的ZigBee 射频芯片(将单片机和射频芯片整合在一起);在应用方面,ZigBee 技术已广泛应用于工业、精确农业、家庭和楼宇自动化、医学、消费和家用自动化、道路指示/安全行路等众多领域。 责编:王雅京 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|