|
基于客户保持的客户关系管理数据分析与设计本文正是基于这一目标,对CRM中的数据库进行最优化设计,从而能更有效地管理客户数据并执行数据挖掘,得到对保持客户有用的信息。 需要说明以下几点: (1)中心数据库,保存了客户的所有信息,采用B/S结构图。 (2)公司的领导、管理人员、营销人员在一定的权限范围内(呈现不同的视图),在任何可以上网的地方查询这些数据。 (3)他们也可以在自己的权限内上传与客户的联系情况,这些数据是实时更新的,其他人员可实时看到这些上传的数据。 (4)公司所有相关人员,随时都可以最快、最全面地了解客户,对了解客户的潜在需求,对保持对客户联系和服务的一致性等意义重大。 (5)为后续的客户分析、数据挖掘等提供基础数据。 3.2 数据库的设计 根据前面的分析,客户具有四类数据,我们设计四个数据库,分别以客户编号作为主码,以便数据库之间建立关联。并且增加以客户姓名、编号、业务员编号、业务员姓名、联系时间、交易金额等多种关键字的布尔运算的检索功能、这样将能最快速便捷的找到相关的数据。 4 客户关系管理系统中的数据挖掘 数据挖掘(Data Mining)是指从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的,人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘可以做到分类、估值,预言、相关性分析或关联规则、聚集、描述和可视化等功能。客户关系管理系统中,利用数据挖掘可以快速有效地找到新的潜在客户,并保持住老客户。 4.1 数据挖掘的常用方法 目前,数据挖掘的常用方法主要有人工神经网络、决策树、遗传算法、近邻算法、规则推导、粗糙集,统计学等,在客户关系管理系统中,又以关联规则方法用得较多。 4.2 CRM中的数据挖掘功能 (1)可利用数据挖掘找出客户的一些共同的特征,深入了解客户,预测哪些人可能成为我们的客户,以帮助行销人员找到正确的营销对象,进而降低成本,也提高营销的成功率。 (2)利用数据挖掘了解客户的产品消费偏好,找出哪些产品客户最容易一起购买,或是预测客户在买了某一样产品之后,在多久的时间之内会买另一样产品等等,这样可以在做市场营销活动中更有效的决定产品组合、产品推荐、产品促销等活动,甚或是在店里要如何摆设货品等,达到最有效地产品营销。 (3)利用数据挖掘对客户的反馈数据进行重点分析,可以更好地改进产品和服务,及时发现并消除客户抱怨,及时发现客户的潜在期望,企业可以据此做出调整,最大限度地满足这些客户的潜在需求,达到快速提高客户忠诚度。 (4)利用数据挖掘,分析客户中的流失客户的特征,再把分析结果应用现有客户数据中,找出可能流失的客户,然后尽可能预防客户流失,甚至可以对客户忠诚度进行排序,如此,则可以量化客户流失率,进而采取有针对性的措施。 5 结束语 CRM不是建一个Call Center就足够了,更不仅仅是把一堆客户基本数据输入计算机就够,完整的CRM运作机制是从客户数据收集开始、经过分类、存储、分析、挖掘、决策等一系列的过程,需要企业的全体人员,重视产品质量,重视服务水平。 通过对CRM数据库的良好设计,使企业能够通过数据挖掘有效地从市场与顾客所搜集累积的大量数据中挖掘出对消费者而言最关键、最重要的信息,并据此建立真正从客户需求出发的客户关系管理系统,得到更多的潜在客户,保持住更多的老客户,从而提高客户忠诚度,为企业发展打下最重要的客户基础。 责编:赵新娜 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
|
|