|
浅析大数据时代的数据挖掘与精细管理信息化时代,人类面对巨大的数据规模,进行数据挖掘与精细管理已是势在必行。在对大数据时代背景进行分析之后,论述了数据挖掘及精细管理的重要性以及如何通过数据挖掘进行精细管理。 (四)大数据时代数据挖掘与数据精细管理的意义 无论是数据挖掘,还是精细管理,在大数据时代都有着十分重要的意义,因为通过分析,我们可以提出提供决策的意见与建议,这些都是靠强大的数据支持的。目前,世界五百强企业中绝大多数在提出管理建议时,都需要大量数据为其作为理论依据。而在我国,即使是中小企业,也在分析、解决问题时开始倾向于用数据说话,如若没有大量数据,便没有理论依据,也就无法提出科学合理的建议。此外, 数据本身其实是会“说话”的,只不过这些话需要自己找出来,在对这些数据进行分析处理之后,就可能从中发现企业所需要的东西。大量的数据中其实隐藏着很多宝藏,比如客户的喜好及市场未来的可能发展趋势等,这些对于企业有极其重要的意义,只有更加了解、接近市场的企业,才能从竞争中脱颖而出。企业必须依靠大量数据的分析才能更好地为客户服务,更好地完成企业的各项工作。 二、大数据时代如何进行数据的深度挖掘 由于企业对大数据资源有开发方面的需求,于是便有了数据的深度挖掘。企业拥有大量宝贵的数据资源,它们都希望从中提炼出最有用的信息与线索。深度数据挖掘包括了准备阶段、挖掘阶段以及结果的表达和解释工作。数据挖掘的手段也有很多,诸如关联分析、分类分析、聚类分析、特异群组分析以及演变态势分析等。 根据数据中的差异性,可以很好地建立分类模型,这样做有十分明显的作用,它能够把状态细分化,实施更具有针对性的营销,找到更有价值的客户群体。可以在进行正式分类前先进行一次估计,然后根据估计结果对数据进行预分类,再进行修正直到达到更好。 对数据进行预测有着十分重要的意义,这是对数据进行深度挖掘的一个不能缺少的过程,也是对于数据挖掘更为高级的应用。预测不仅是估计大数据,更要求根据这些大数据进行准确的预判。预测要对以前做好的大数据集进行分析整理,对它所代表的现实世界进行抽象,初步得到最基本的模型,然后从信度及效度两个方面对模型进行检验,确保建立的模型的准确性。建立模型只是一个对数据进行模拟的过程,其目的是通过这一过程对未来趋势进行预测,尽量达到准确。数据本身是过去的,从这一方面来说它们只能代表过去,但是我们可以通过模型找到其产生的基本机制,使预测成为可能并有准确性。过去的数据并不只是能够表示过去,它们是十分珍贵的财富,因为从这些数据之中我们能够预测未来。预测是一个复杂的过程,据统计,目前有关预测已经存在的模型已经有了几百种,就算是最常用模型的也有好几十种,因此这个过程有待于进一步提高和改进。现实世界是复杂的,虽然说预测技术到目前有了突飞猛进的发展,但是预测只是预测,永远都替代不了现实,而且任何已经存在的模型都不一定比量身定做出来的更符合当前的业务。目前,可以运用于大部分企业应用的模型有很多种,包括多元回归、非线性回归、AR模型、MA模型等各种各样的预测模型。还有一些是专业级统计应用软件,比如矩阵实验室、SAS、SPSS、MATLAB等,这些也为深度数据挖掘提供了便利条件。 三、大数据时代数据精细管理浅析 如果说数据挖掘提高了企业的洞察力,那么大数据管理的精细程度则为企业提供了数据管理方面的保障。目前,大数据的精细管理仅限于大型企业,尤其是互联网或其他高科技企业,因为庞大的数据量在目前并不会出现于普通百姓之家,即使一些企业有数十年的数据量,也都没有达到大数据的水平。不管是以利润为中心,还是以客户为中心,大数据的精细管理都是一种推动力量,有利于推动企业的发展。大数据的精细管理为其提供了管理方面的基础,同时为差异化竞争提供了原始理论方面的强有力支撑。目前大型企业在精细管理方面存在着不少问题,正是由于这些问题的存在才导致企业主营业务缺乏方向性、针对性、导向性以及向心性等诸问题。 结束语 “大数据时代”这个概念的出现只有短短数年时间,但是这个概念已经渗透到五洲四海,与之伴随的则是大数据时代的数据挖掘与管理革命。我国的大型企业都十分重视对大量数据的获取与掌握,这充分说明,数据挖掘与精细管理在这个崭新的大数据时代中具有非同一般的重要意义。 责编:李玉琴 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
热门博文 |
|