|
影响商业智能解决方案的因素商业智能利用数据仓库技术,OLAP和数据挖掘技术不断发现新的知识,扩充到现有的企业知识中来。但就目前国内企业应用现状和算法实现上来看,制约知识发现的因素较多,同时也影响了BI的性能。 本文关键字: 商业智能 商业智能利用数据仓库技术,OLAP和数据挖掘技术不断发现新的知识,扩充到现有的企业知识中来。但就目前国内企业应用现状和算法实现上来看,制约知识发现的因素较多,同时也影响了BI的性能。 1、基础数据建设不完善 对于小企业来说,使用诸如ERP、SCM、CRM等在线交易系统的时间还不长,系统内存储的数据量还不是很大。但随着信息化的发展,中型企业基本上已经是比较成熟的ERP用户了。正是进行商业智能分析的大好时机。 一般来说,基础数据的不完善,存在着这样2方面情况: 首先,是数据之间缺乏关联关系。 譬如希望分析采购订单与收货记录,以考核交货及时率,但是系统的数据库表中并不存在采购订单与入库验收单之间的关联;希望考核销售员业绩,但是系统的数据库表中不存在销售订单与销售员之间的关联关系。这些关联关系,都是在在线交易系统使用过程中实时录入的,同后维护工作极大也不可行。 其次,是数据不真实。譬如超市对销售客户的分析。为了分析客户的购买习惯,需要按照客户的性别、年龄、家庭住址与超市的距离、家庭收入、家庭成员数等进行分类,但是,实际客户填写的资料并非是真实的。据此分析的结论显然不会真实。 2、智能决策程度不高 由于目前中小型企业在扩张过程中,往往存在管理滞后的现象,以数据支持决策的工作还没有得到成熟的阶段。所以目前阶段的商业智能分析,仍然处于收集数据、分类汇总、及时展现的初级阶段。 目前的一些大型企业的商业智能项目,其项目实现的目标并不实用,它们仅仅是实现了会计的三大报表(资产负债表、损益表、现金流量表),以及预算与实际的对比,而在预算与实际对比的系统运用中,并不如理想中的方便。有的企业的商业智能分析软件,是提供一个接口,让操作者在Excel电子表中制作相应格式的报表,然后定期导入到智能分析软件中,完全丧失了软件的自动化功能。 所以,中小企业应该以务实的念度来对待商业智能分析系统。应该通过商业智能分析,决策者看到报表数据,立刻可以决定下一步的行动计划。决策者所需要的,仅仅是及时提供数据准确的报表。 3、系统智能不能很好实现 现有数据挖掘算法大多尚不成熟,效率较低。另外,作为BI数据基础的数据仓库或数据集市中数据量一般比较大,新知识形成的速度和准确性比较低,致使现有的BI系统在知识发现方面的能力不能满足用户要求。 责编:刘沙 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
热门博文 |
|