|
数据仓库技术的发展及体系结构传统的数据库技术是以单一的数据资源,即数据库为中心,进行事务处理工作的。然而,不同类型的数据有着不同的处理特点,以单一的数据组织方式进行组织的数据库并不能反映这种差异,满足不了现代商业企业数据处理多样化的要求。总结起来,当前的商、世企业数据处理可以大致地划分为2大类:操作型处理和分析型处理。 本文关键字: 数据仓库技术 1 数据仓库技术的发展及概念 传统的数据库技术是以单一的数据资源,即数据库为中心,进行事务处理工作的。然而,不同类型的数据有着不同的处理特点,以单一的数据组织方式进行组织的数据库并不能反映这种差异,满足不了现代商业企业数据处理多样化的要求。总结起来,当前的商、世企业数据处理可以大致地划分为2大类:操作型处理和分析型处理。操作型处理也叫事务型处理,主要是为企业的特定应用服务的(这是目前最为常用的),分析型处理则用于商业企业管理人员的决策分析,这种需求既要求联机服务,又涉及大量用于决策的数据,传统的数据库系统已经无法满足,具体体现在: 1)历史数据量大; 2)辅助决策信息涉及许多部门的数据,而不同系统的数据难以集成; 3)由于访问数据的能力不足,它对大量数据的访问能力明显下降。 数据仓库技术的出现为解决上述问题提供了新的思路。数据仓库的创始人Inmon指出:“数据仓库是面向主题的、集成的、稳定的、随时间变化的数据集合,用以支持经营管理中的决策制定过程”。它从大量的事务型数据中抽取数据,并将其清理、转换为新的存储格式,即为决策目标把数据聚合在一种特殊的格式中,作为决策分析的数据基础,从而在理论上解决了从不同系统的数据库中提取数据的难题。同时,利用联机分析处理(OLAP)技术可以对数据仓库提供的数据进行深入加工。 2 企业数据仓库的体系结构 1)数据源。 数据源是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于企业操作型数据库中(通常存放在RD-BMS中)的各种业务数据,外部信息包括各类法律法规、市场信息、竞争对手的信息以及各类外部统计数据及各类文档等。 2)数据的存储与管理。 数据的存储与管理是整个数据仓库系统的核心。在现有各业务系统的基础上,对数据进行抽取、清理,并有效集成,按照主题进行重新组织,最终确定数据仓库的物理存储结构,同时组织存储数据仓库元数据(具体包括数据仓库的数据字典、记录系统定义、数据转换规则、数据加载频率以及业务规则等信息)。按照数据的覆盖范围,数据仓库存储可以分为企业级数据仓库和部门级数据仓库(通常称为“数据集市”,Data Mart)。数据仓库的管理包括数据的安全、归档、备份、维护、恢复等工作。这些功能与目前的DBMS基本一致。 3)OLAP服务器。 对分析需要的数据按照多维数据模型进行再次重组,以支持用户多角度、多层次的分析,发现数据趋势。 4)前端工具与应用。 前端工具主要包括各种数据分析工具、报表工具、查询工具、数据挖掘工具以及各种基于数据仓库或数据集市开发的应用。其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具既针对数据仓库,同时也针对OLAP服务器。 责编:张欢 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
热门博文 |
|