华为HPC存储解决方案 助力石油勘探工业

来源: 存储在线
2014/4/15 15:47:13
石油勘探过程产生的大数据有自己独特的“4V”特征,针对石油行业的特点和需求,华为提出了石油勘探HPC解决方案.

分享到: 新浪微博 腾讯微博
本文关键字: 存储系统 OceanStor9000 华为
能源行业迈入大数据时代
随着数据总量的持续增长和急速膨胀,大数据时代已经来临,石油、 电力等能源细分行业纷纷拉开了大数据开发应用的序幕。如何从海量数据中高效获取信息,有效地深加工并最终得到有用数据是能源企业涉足大数据的目的。
对石油行业来说,众多企业正在把更多的新技术应用于战略决策、科技研发、生产经营和安全环保等各个领域,目的是为了从大数据资源中挖掘更多的财富和价值。大数据应用是石油行业信息化深入、IT与业务深度融合的必然趋势,在我国石油石化行业应用的前景将越来越广阔。随着石油储备的逐步减少,石油石化行业产业链中的勘探、开发难度日益增大, 信息化的成熟度已经成为影响行业增长幅度的首要因素。精准、快速的地质勘测成为世界能源巨头们倚重的核心竞争力之一,其中 高性能计算技术和大数据技术的应用是关键因素。
油气勘探海量数据处理需要高性能计算
目前在石油勘探中最常用的是地球物理方法。地球物理方法是使用现代物理方法进行地质勘探的方法,包括电法、磁法、重力法、放射性法、地震波法等,其中以地震波法最为重要。为了了解和模拟出地下数千米的地质构造,通过地震波反射方式来收集海量数据,一般二维数据可达1~2TB,三维数据可高达几百TB甚至PB级, 然后进行大量的密集计算和模拟,计算结果出来后还要转换成直观的可视画面,方便专家对数据进行解释,为油气钻井定位提供参考。因此,这些海量数据的处理只有借助高性能计算才能实现最佳的勘探效益,这也是在石油勘探领域高性能计算需求的主因。
由于石油勘探行业的特殊性和复杂性,石油勘探对高性能计算提出了非常苛刻的要求。过去十年中,石油勘探计算处理多采用大型机或高性能计算机,但目前高性能计算机系统在计算性能、系统建设与运行成本等方面已经面临着许多问题。让石油勘探企业感到颇为头痛的问题主要集中在三大困境:一是计算能力需求和CPU 处理器性能落差越来越大,目前通过不断提高CPU处理器的工作频率来提高计算性能的技术路线已经逐步走向其极限;二是石油勘探高速增长的数据和存储扩容越来越不匹配;三是能耗制约越来越严重,高性能计算机的体积大、耗电多等弱点以及对庞大的计算机房空间需求、空调需求和用电量等已经成为石油勘探数据处理的一大挑战。
地震资料数据的大数据特征
BGP(中国石油集团东方地球物理公司)是中国石油天然气集团公司独资的地球物理专业化技术服务公司,主要从事陆地、浅海地震勘探采集、处理、解释及物探装备和 软件研发,业务分布在全球34个国家,陆上地震勘探市场份额居全球第一位。现拥有2.6万员工,3000多IT人员和300多软件开发人员,在全球有23个处理中心,约9万CPU核和80万GPU核,运算能力约2PFlops,存储容量超过25PB。
共3页: 上一页1 [2] [3]
责编:李玉琴
vsharing 微信扫一扫实时了解行业动态
portalart 微信扫一扫分享本文给好友
著作权声明:kaiyun体育官方人口 文章著作权分属kaiyun体育官方人口 、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
最新专题
流动存储 为大数据而生

伴随信息技术的突飞猛进,更大量级的非结构化数据与结构化数据构成的大数据成为企业级存储所面临的最大挑战:一方..

磁盘阵列及虚拟化存储

利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。虚拟化存储,对存储硬件资源进行抽象化表现。

    畅享
    首页
    返回
    顶部
    ×
    畅享IT
      信息化规划
      IT总包
      供应商选型
      IT监理
      开发维护外包
      评估维权
    客服电话
    400-698-9918
    Baidu
    map