大数据带来的安全挑战

来源: 互联网
2014/4/4 9:07:00
科学技术是一把双刃剑。大数据所引发的安全问题与其带来的价值同样引人注目。而最近爆发的“棱镜门”事件更加剧了人们对大数据安全的担忧。

分享到: 新浪微博 腾讯微博
本文关键字: 大数据
科学技术是一把双刃剑。大数据所引发的安全问题与其带来的价值同样引人注目。而最近爆发的“棱镜门”事件更加剧了人们对大数据安全的担忧。与传统的信息安全问题相比,大数据安全面临的挑战性问题主要体现在以下几个方面。
1 大数据中的用户隐私保护
大量事实表明,大数据未被妥善处理会对用户的隐私造成极大的侵害。根据需要保护的内容不同,隐私保护又可以进一步细分为位置隐私保护、标识符匿名保护、连接关系匿名保护等。
人们面临的威胁并不仅限于个人隐私泄漏,还在于基于大数据对人们状态和行为的预测。一个典型的例子是某零售商通过历史记录分析,比家长更早知道其女儿已经怀孕的事实,并向其邮寄相关广告信息。而社交网络分析研究也表明,可以通过其中的群组特性发现用户的属性。例如通过分析用户的Twitter信息,可以发现用户的政治倾向、消费习惯以及喜好的球队等。
当前企业常常认为经过匿名处理后,信息不包含用户的标识符,就可以公开发布了。但事实上,仅通过匿名保护并不能很好地达到隐私保护目标。例如,AOL公司曾公布了匿名处理后的3个月内部分搜索历史,供人们分析使用。虽然个人相关的标识信息被精心处理过,但其中的某些记录项还是可以被准确地定位到具体的个人。纽约时报随即公布了其识别出的1位用户。编号为4417 749的用户是1位62岁的寡居妇人,家里养了3条狗,患有某种疾病,等等。另一个相似的例子是,着名的DVD租赁商Netflix曾公布了约50万用户的租赁信息,悬赏100万美元征集算法,以期提高电影推荐系统的准确度。但是当上述信息与 其它数据源结合时,部分用户还是被识别出来了。研究者发现,Netflix中的用户有很大概率对非topl00、top500、topl000的影片进行过评分,而根据对非top影片的评分结果进行去匿名化(de-anonymizing)攻击的效果更好。
目前用户数据的收集、存储、管理与使用等均缺乏规范,更缺乏监管,主要依靠企业的自律。用户无法确定自己隐私信息的用途。而在商业化场景中,用户应有权决定自己的信息如何被利用,实现用户可控的隐私保护。例如用户可以决定自己的信息何时以何种形式披露,何时被销毁。包括:(1)数据采集时的隐私保护,如数据精度处理;(2)数据共享、发布时的隐私保护,如数据的匿名处理、人工加扰等;(3)数据分析时的隐私保护;(4)数据生命周期的隐私保护;(5)隐私数据可信销毁等。
2 大数据的可信性
关于大数据的一个普遍的观点是,数据自己可以说明一切,数据自身就是事实。但实际情况是,如果不仔细甄别,数据也会欺骗,就像人们有时会被自己的双眼欺骗一样。
大数据可信性的威胁之一是伪造或刻意制造的数据,而错误的数据往往会导致错误的结论。若数据应用场景明确,就可能有人刻意制造数据、营造某种“假象”,诱导分析者得出对其有利的结论。由于虚假信息往往隐藏于大量信息中,使得人们无法鉴别真伪,从而做出错误判断。例如,一些点评网站上的虚假评论,混杂在真实评论中使得用户无法分辨,可能误导用户去选择某些劣质商品或服务。由于当前网络社区中虚假信息的产生和传播变得越来越容易,其所产生的影响不可低估。用信息安全技术手段鉴别所有来源的真实性是不可能的。
大数据可信性的威胁之二是数据在传播中的逐步失真。原因之一是人工干预的数据采集过程可能引入误差,由于失误导致数据失真与偏差,最终影响数据分析结果的准确性。此外,数据失真还有数据的版本变更的因素。在传播过程中,现实情况发生了变化,早期采集的数据已经不能反映真实情况。例如,餐馆电话号码已经变更,但早期的信息已经被其它搜索引擎或应用收录,所以用户可能看到矛盾的信息而影响其判断。
因此,大数据的使用者应该有能力基于数据来源的真实性、数据传播途径、数据加工处理过程等,了解各项数据可信度,防止分析得出无意义或者错误的结果。
密码学中的数字签名、消息鉴别码等技术可以用于验证数据的完整性,但应用于大数据的真实性时面临很大困难,主要根源在于数据粒度的差异。例如,数据的发源方可以对整个信息签名,但是当信息分解成若干组成部分时,该签名无法验证每个部分的完整性。而数据的发源方无法事先预知哪些部分被利用、如何被利用,难以事先为其生成验证对象。
3 如何实现大数据访问控制
访问控制是实现数据受控共享的有效手段。由于大数据可能被用于多种不同场景,其访问控制需求十分突出。
大数据访问控制的特点与难点在于:
(1)难以预设角色,实现角色划分。由于大数据应用范围广泛,它通常要为来自不同组织或部门、不同身份与目的的用户所访问,实施访问控制是基本需求。然而,在大数据的场景下,有大量的用户需要实施权限管理,且用户具体的权限要求未知。面对未知的大量数据和用户,预先设置角色十分困难。
(2)难以预知每个角色的实际权限。由于大数据场景中包含海量数据,安全管理员可能缺乏足够的专业知识,无法准确地为用户指定其所可以访问的数据范围。而且从效率角度讲,定义用户所有授权规则也不是理想的方式。以医疗领域应用为例,医生为了完成其工作可能需要访问大量信息,但对于数据能否访问应该由医生来决定,不应该需要管理员对每个医生做特别的配置。但同时又应该能够提供对医生访问行为的检测与控制,限制医生对病患数据的过度访问。
此外,不同类型的大数据中可能存在多样化的访问控制需求。例如,在Web2.0个人用户数据中,存在基于历史记录的访问控制;在地理地图数据中,存在基于尺度以及数据精度的访问控制需求;在流数据处理中,存在数据时间区间的访问控制需求,等等。如何统一地描述与表达访问控制需求也是一个挑战性问题。
责编:李玉琴
vsharing 微信扫一扫实时了解行业动态
portalart 微信扫一扫分享本文给好友
著作权声明:kaiyun体育官方人口 文章著作权分属kaiyun体育官方人口 、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
最新专题
流动存储 为大数据而生

伴随信息技术的突飞猛进,更大量级的非结构化数据与结构化数据构成的大数据成为企业级存储所面临的最大挑战:一方..

磁盘阵列及虚拟化存储

利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。虚拟化存储,对存储硬件资源进行抽象化表现。

    畅享
    首页
    返回
    顶部
    ×
    畅享IT
      信息化规划
      IT总包
      供应商选型
      IT监理
      开发维护外包
      评估维权
    客服电话
    400-698-9918
    Baidu
    map