大数据如何摘下“新瓶旧酒”标签?

来源: 互联网
2013/3/30 10:22:57
有人评价“大数据是个相对的概念,是新瓶装旧酒。”认为,传说的大数据处理方式,只不过是为赶时髦,在既有的方案上包装了一下,新瓶装旧酒。

分享到: 新浪微博 腾讯微博
本文关键字: 大数据 新瓶旧酒

大数据如何摘下“新瓶旧酒”标签?

有人评价“大数据是个相对的概念,是新瓶装旧酒。”认为,传说的大数据处理方式,只不过是为赶时髦,在既有的方案上包装了一下,新瓶装旧酒。海量数据时代并没有给多少企业带来革命性的变化,在 MapReduce 以及 Hadoop 出现之前,也有企业能够轻松的对数据进行大规模并行计算,而 NoSQL 的出现也只是为处理数据的方式带来了更多可能性。

所以,从结果来看,对于大数据的质疑并没有比BI少,同样遭遇了“还差一公里”的尴尬。

大数据分析缺乏成熟的实践经验,其方式方法与传统的数据仓库与BI系统有着一定的区别。在实施大数据分析项目之前,企业不仅应该知道使用何种技术,还应该知道在什么时候、什么地方使用。各数据之间有哪些关联性?哪个数据是可信的?如何从海量的数据中挖掘出有价值的、易用的客户信息?

要回答这些问题,企业需要一个单一、完整、可信的客户数据视图,而创建一个单一、完整、可信的客户数据视图,数据集成是关键。没有集成的数据,其商业价值为零。数据集成让组织机构能够将传统的交易数据与全新的交互数据组合起来,从而获得在其他情况下无法达成的洞察力和价值。

可以确定的是,随着互联网技术的发展,未来的大数据时代,一定是各种信息呈现规模快速增长的状态,如何更快获取有用的信息是关键,智能分析工具会变得越来越重要,可以凌驾于多个管理系统、数据库之上,如何通过更灵活、可控的BI工具,真正挖掘出大数据时代的价值,是大数据BI面临的共同挑战。

责编:李红燕
vsharing 微信扫一扫实时了解行业动态
portalart 微信扫一扫分享本文给好友
著作权声明:kaiyun体育官方人口 文章著作权分属kaiyun体育官方人口 、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
最新专题
流动存储 为大数据而生

伴随信息技术的突飞猛进,更大量级的非结构化数据与结构化数据构成的大数据成为企业级存储所面临的最大挑战:一方..

磁盘阵列及虚拟化存储

利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。虚拟化存储,对存储硬件资源进行抽象化表现。

    畅享
    首页
    返回
    顶部
    ×
    畅享IT
      信息化规划
      IT总包
      供应商选型
      IT监理
      开发维护外包
      评估维权
    客服电话
    400-698-9918
    Baidu
    map