|
企业大数据安全分析的四大关键要点文章中对大数据安全分析方案做出了基本定义,任何一种大数据安全分析机制都必须具备庞大的规模处理能力以及灵活的查询功能,但企业应该如何在众多产品当中做出选择? 背景。当恶意软件将矛头指向未安装最新补丁的系统时,情况就变得非常危急。然而当恶意软件尝试进攻已经安装了补丁的系统时,事态则没那么严重。随着时间推移,大数据安全分析将与连续监测下的威胁检测/取证相结合,共同针对相关网络攻击做出风险评分。McAfee公司将通过对McAfee安全管理器(即Nitro)与ePO加以整合来推动这一进程。RSA也将通过其大数据安全分析机制与Archer的桥接实现同样的目标。惠普在这条道路上同样拥有自己的规划。 自动化。类似于由IDS向IPS的过渡,自动化进程可能会由于安全人员对误报状况的担忧而进展缓慢。不过安全自动化机制的普及能够帮助安全人员紧跟不断增长的实际需求。思科公司将利用其网络基础设施、SDN以及基于云计算的大数据安全智能方案实现网络安全自动化。以Check Point以及Palo Alto Networks为代表的其它网络安全厂商也将踏上这段征程。IBM同样表现积极,有意将其网络安全产品组合(即ISS)、Trusteer(即端点安全方案)、QRadar、IBM Security Intelligence、大数据以及X-force安全情报方案进行整合。 安全专家在对大数据安全分析产品进行研究及评估时,应当确保将AVCA作为规范要求中的组成部分。而从供应商的角度出发,良好的AVCA实现能力将成为通往成功的有效助力。
责编:王雅京 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:kaiyun体育官方人口
文章著作权分属kaiyun体育官方人口
、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 推荐圈子 |
|