影响数据检索效率的几个因素

来源: 开云全站app 中国大数据作者:kaiyun体育官方人口
2015/8/13 13:26:39
数据检索有两种主要形态。影响数据检索效率的就那么几个因素。

分享到: 新浪微博 腾讯微博
本文关键字: 数据检索

数据检索有两种主要形态。第一种是纯数据库型的。典型的结构是一个关系型数据,比如 mysql。用户通过 SQL 表达出所需要的数据,mysql 把 SQL 翻译成物理的数据检索动作返回结果。第二种形态是现在越来越流行的大数据玩家的玩法。典型的结构是有一个分区的数据存储,最初这种存储就是原始的 HDFS,后来开逐步有人在 HDFS 上加上索引的支持,或者干脆用 Elasticsearc 这样的数据存储。然后在存储之上有一个分布式的实时计算层,比如 Hive 或者 Spark SQL。用户用 Hive SQL 提交给计算层,计算层从存储里拉取出数据,进行计算之后返回给用户。这种大数据的玩法起初是因为 SQL 有很多 ad-hoc 查询是满足不了的,干脆让用户自己写 map/reduce 想怎么算都可以了。但是后来玩大了之后,越来越多的人觉得这些 Hive 之类的方案查询效率怎么那么低下啊。于是一个又一个项目开始去优化这些大数据计算框架的查询性能。这些优化手段和经典的数据库优化到今天的手段是没有什么两样的,很多公司打着搞计算引擎的旗号干着重新发明数据库的活。所以,回归本质,影响数据检索效率的就那么几个因素。我们不妨来看一看。

数据检索干的是什么事情

定位 => 加载 => 变换

找到所需要的数据,把数据从远程或者磁盘加载到内存中。按照规则进行变换,比如按某个字段group by,取另外一个字段的sum之类的计算。

影响效率的四个因素

读取更少的数据

数据本地化,充分遵循底层硬件的限制设计架构

更多的机器

更高效率的计算和计算的物理实现

原则上的四点描述是非常抽象的。我们具体来看这些点映射到实际的数据库中都是一些什么样的优化措施。

读取更少的数据

数据越少,检索需要的时间当然越少了。在考虑所有技术手段之前,最有效果的恐怕是从业务的角度审视一下我们是否需要从那么多的数据中检索出结果来。有没有可能用更少的数据达到同样的效果。减少的数据量的两个手段,聚合和抽样。如果在入库之前把数据就做了聚合或者抽样,是不是可以极大地减少查询所需要的时间,同时效果上并无多少差异呢?极端情况下,如果需要的是一天的总访问量,比如有1个亿。查询的时候去数1亿行肯定快不了。但是如果统计好了一天的总访问量,查询的时候只需要取得一条记录就可以知道今天有1个亿的人访问了。

索引是一种非常常见的减少数据读取量的策略了。一般的按行存储的关系型数据库都会有一个主键。用这个主键可以非常快速的查找到对应的行。KV存储也是这样,按照Key可以快速地找到对应的Value。可以理解为一个Hashmap。但是一旦查询的时候不是用主键,而是另外一个字段。那么最糟糕的情况就是进行一次全表的扫描了,也就是把所有的数据都读取出来,然后看要的数据到底在哪里,这就不可能快了。减少数据读取量的最佳方案就是,建立一个类似字典一样的查找表,当我们找 username=wentao 的时候,可以列举出所有有 wentao 作为用户名的行的主键。然后拿这些主键去行存储(就是那个hashmap)里捞数据,就一捞一个准了。

谈到索引就不得不谈一下一个查询使用了两个字段,如何使用两个索引的问题。mysql的行为可以代表大部分主流数据库的处理方式:

基本上来说,经验表明有多个单字段的索引,最后数据库会选一最优的来使用。其余字段的过滤仍然是通过数据读取到内存之后,用predicate去判断的。也就是无法减少数据的读取量。

在这个方面基于inverted index的数据就非常有特点。一个是Elasticsearch为代表的lucene系的数据库。另外一个是新锐的druid数据库。

效果就是,这些数据库可以把单字段的filter结果缓存起来。多个字段的查询可以把之前缓存的结果直接拿过来做 AND 或者 OR 操作。

索引存在的必要是因为主存储没有提供直接的快速定位的能力。如果访问的就是数据库的主键,那么需要读取的数据也就非常少了。另外一个变种就是支持遍历的主键,比如hbase的rowkey。如果查询的是一个基于rowkey的范围,那么像hbase这样的数据库就可以支持只读取到这个范围内的数据,而不用读取不再这个范围内的额外数据,从而提高速度。这种加速的方式就是利用了主存储自身的物理分布的特性。另外一个更常见的场景就是 partition。比如 mysql 或者 postgresql 都支持分区表的概念。当我们建立了分区表之后,查找的条件如果可以过滤出分区,那么可以大幅减少需要读取的数据量。比 partition 更细粒度一些的是 clustered index。它其实不是一个索引(二级索引),它是改变了数据在主存储内的排列方式,让相同clustered key的数据彼此紧挨着放在一起,从而在查询的时候避免扫描到无关的数据。比 partition 更粗一些的是分库分表分文件。比如我们可以一天建立一张表,查询的时候先定位到表,再执行 SQL。比如 graphite 给每个 metric 创建一个文件存放采集来的 data point,查询的时候给定metric 就可以定位到一个文件,然后只读取这个文件的数据。

另外还有一点就是按行存储和按列存储的区别。按列存储的时候,每个列是一个独立的文件。查询用到了哪几个列就打开哪几个列的文件,没有用到的列的数据碰都不会碰到。反观按行存储,一张中的所有字段是彼此紧挨在磁盘上的。一个表如果有100个字段,哪怕只选取其中的一个字段,在扫描磁盘的时候其余99个字段的数据仍然会被扫描到的。

考虑一个具体的案例,时间序列数据。如何使用读取更少的数据的策略来提高检索的效率呢?首先,我们可以保证入库的时间粒度,维度粒度是正好是查询所需要的。如果查询需要的是5分钟数据,但是入库的是1分钟的,那么就可以先聚合成5分钟的再存入数据库。对于主存储的物理布局选择,如果查询总是针对一个时间范围的。那么把 timestamp 做为 hbase 的 rowkey,或者 mysql 的 clustered index 是合适。这样我们按时间过滤的时候,选择到的是一堆连续的数据,不用读取之后再过滤掉不符合条件的数据。但是如果在一个时间范围内有很多中数据,比如1万个IP,那么即便是查1个IP的数据也需要把1万个IP的数据都读取出来。所以可以把 IP 维度也编码到 rowkey 或者 clustered index 中。但是假如另外还有一个维度是 OS,那么查询的时候 IP 维度的 rowkey 是没有帮助的,仍然是要把所有的数据都查出来。这就是仅依靠主存储是无法满足各种查询条件下都能够读取更少的数据的原因。所以,二级索引是必要的。我们可以把时间序列中的所有维度都拿出来建立索引,然后查询的时候如果指定了维度,就可以用二级索引把真正需要读取的数据过滤出来。但是实践中,很多数据库并不因为使用了索引使得查询变快了,有的时候反而变得更慢了。对于 mysql 来说,存储时间序列的最佳方式是按时间做 partition,不对维度建立任何索引。查询的时候只过滤出对应的 partition,然后进行全 partition 扫描,这样会快过于使用二级索引定位到行之后再去读取主存储的查询方式。究其原因,就是数据本地化的问题了。

责编:何鹏
vsharing 微信扫一扫实时了解行业动态
portalart 微信扫一扫分享本文给好友
著作权声明:kaiyun体育官方人口 文章著作权分属kaiyun体育官方人口 、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
最新专题
成都行

成都行亮点 成都行程 智囊团 参观成员 合作媒体 活动咨询..

2015年中国制造业信息化峰会

大会聚焦 大会亮点 大会议程 重要嘉宾 成都行 赞助合作 ..

    畅享
    首页
    返回
    顶部
    ×
    畅享IT
      信息化规划
      IT总包
      供应商选型
      IT监理
      开发维护外包
      评估维权
    客服电话
    400-698-9918
    Baidu
    map