BI的选型要抓住要点

作者:kaiyun体育官方人口
2009/10/12 11:04:40
什么是最合适?抛开上面提到的幕后因素,其实也就是三点需要考虑——产品成本、开发人员对这个产品的熟悉程度、有没有类似案例。

分享到: 新浪微博 腾讯微博
本文关键字: BI选型 数据库 数据挖掘

要选型,首先要了解目前市场上主流的BI产品:

数据库方面,有DB2、Oracle、SQL Server、Teradata,早先还有专门用于数据仓库的Redbrick(被IBM收编以后,退出历史舞台)。

ETL工具上,像Datastage、Powercenter都是比较主流的,此外,还有很多公司也有自己的ETL产品,例如SAS的ETL Server、BO的Data Integrator等。

OLAP工具上,则还可以细分为MOLAP(MuiltDimension OLAP,多维度型在线分析系统)和ROLAP(Relational OLAP,关系型在线分析系统),前者可以选择Hyperion、Cognos、Microsoft公司的产品,而后者可供选择的余地就不多,像 Microstrategy可能是目前能够看得见市场份额比较大的,以前和Redbrick一起。此外,还有一个叫Metacube的ROLAP工具,早在2000年以后也退出市场。

数据挖掘产品领域,有SAS、SPSS等两大厂家,而像IBM、Teradata也都有自己的挖掘工具。除此之外,在报表服务器、前端工具上的选择可就多了,其中,Cognos、BO、Brio是比较主流的。

从这些主流产品来看,大多是舶来品。国内也有研发BI产品的,但多限于ETL、前端以及数据挖掘产品。从目前各类用户的产品选型过程来看,问题多出在以下几个方面。

其一,只见树木不见森林,只顾得降低单个工具的成本,却忽视了总体成本。有些大企业在IT建设上一掷千金,从不在乎在购买产品上投入多少,每一块都是选用最好的。但是,更多的企业则不得不出于成本考虑,能省则省。除了数据库和OLAP工具两项之外,经常动心思的地方就是,设想如果把ETL和前端展现自己来开发是不是会省点资金出来。

然而问题是,如果仅仅从单个产品的成本考虑而忽视综合的项目成本,最后很可能会被难以维护的程序所困扰,甚至要完全推翻重来,这样的成本恐怕会更高。而对于那些财大气粗的大企业来说,即便选择了每个领域最好的产品,组合起来也不一定就是最好的。

其二,评估报告难以客观。企业负责产品选型的人,通常要求厂商提供一份评估报告,要列出几种方案选择,各自优劣何在,最后得出哪种方案是最适合自己的。

如果从字面上理解此报告,某种产品哪方面比较好,哪方面不好,这并不客观。对于厂商而言,这就是一笔单子,当然会尽量把自己产品的优势体现出来,而回避自己的弱势。同时对于选型负责人来说,也许其早就对某种工具有好感,或是跟某个厂家的关系不错,甚至有更进一步的交易。这样的情况,想客观一点不容易。

选型要点

其实,如果是选择这些主流的产品的话,大家知道一句话,“没有最好的,只有最合适的”。什么是最合适?抛开上面提到的幕后因素,其实也就是三点需要考虑——产品成本、开发人员对这个产品的熟悉程度、有没有类似案例。

首先看成本。NCR、IBM和Oracle的产品线完整,但却很贵。微软的产品便宜些,可如果数据量大,恐怕又不太敢用它,就更别谈那些不要钱的开源产品了。当然,成本不光是产品本身的价格决定的,后面人员学习、项目延期、客户满意度低都要作为成本考虑,这些隐型成本才是难以计算的。提到成本,就不能不提一下BI模型,因为BI产品中模型是最昂贵的一部分,在国内很大一部分企业采用的自主开发的方式,采用这种方式可以避免高额的费用,但却无法学习到国外先进的商业经验。

再看人员的经验。人的学习曲线是不可避免的,不要妄想人们接触一个新产品就能立马成为高手,能够基于陌生的产品做出良好架构。这方面,显然Oracle 和微软有优势,因为在这两家产品上有经验的人多,好找。当然,如果你们原来的业务系统用的就是这几家产品之一,不妨仍然用它。

其次案例比白皮书更重要。如今很多BI厂商可以提供全方位解决方案,提供一站式服务。像IBM、Oracle、SAS都称自己是这样的全方案提供商,也就是说它们的产品线已经包含了数据库、OLAP、ETL等各类工具。直接选用它们,就不用再为工具选型烦恼了,但企业有时由于各方面的原因,决定不使用一家产品时,要考虑他们之间是否兼容。但如果你要是从产品的白皮书里去寻找此类信息,会发现说得很美,互相之间会如何完美地“无缝”兼容,但实际上却不是那么回事。因此,不要去看这些文字的东西,要去寻找同行业类似的案例,如果同行业没有,就去寻找数据量类似、业务复杂度类似以及相似应用的其他行业案例。

来源:中国商业智能

责编:姜玲
vsharing 微信扫一扫实时了解行业动态
portalart 微信扫一扫分享本文给好友
著作权声明:kaiyun体育官方人口 文章著作权分属kaiyun体育官方人口 、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。
畅享
首页
返回
顶部
×
畅享IT
    信息化规划
    IT总包
    供应商选型
    IT监理
    开发维护外包
    评估维权
客服电话
400-698-9918
Baidu
map